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A fourth-order accurate tridiagonal operator compact implicit finite-difference method for 
diffusion-convection equations is developed. The coefficients of the difference operator 
contain exponentials of the coefftcients of the differential operator. In this way the method 
avoids spurious oscillations when the cell Reynolds number is large. Numerical results and 
comparisons to other methods are presented. 

INTRODUCTION 

The numerical simulation or modelling of physical processes involving diffusion 
and convection involves the approximation of spatial differential operators of the 
form 

Lu = g acx,g + b(x)$ 
( 1 

Of extreme importance and difftculty in these physical applications is the case of 
convection-dominated flow, i.e., the case where the diffusion coefficient a(x) is much 
smaller than the convection coefficient b(x). Examples of this type of flow are 
boundary-layer flow, convective-heat transport with large Peclet numbers, and 
miscible-displacement processes in flow-through porous media. 

The ability of numerical methods to solve problems in which Eq. (1) appears may 
be studied through consideration of the singular perturbation problem 

Lu=EgJ+b(x)g=f, for XE (0, 1), 

where f is smooth, a, and a, are given constants, and b is positive. With the above 
assumptions, it is well known that as E + 0, Eq. (2) has no turning points, the soution 
exhibits a boundary layer adjacent to x = 0, and obeys a maximum principle [ 11. 

Classical finite-difference methods for Eq. (2) are constructed by developing 
separate difference relationships for first and second derivatives and combining these 
formulas to obtain an approximation to the differential operator. If central-difference 
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EXPONENTIAL OCI METHOD 139 

methods are used for both first and second derivatives, then the derived scheme will 
have a formal cell Reynolds-number limitation. That is, with a uniform mesh length 
h, f = 0, and b constant, one finds that the cell Reynolds number, bh/c, must be 
bounded by a method-dependent constant to avoid spurious oscillations or gross inac- 
curacies. For small E this requires a prohibitive number of grid points. The cell 
Reynolds-number problem may be avoided by replacing the central-difference 
approximation used for the first derivative with a noncentered- or “upwind”- 
difference method. The result is a method which avoids spurious oscillations. 
However, artificial diffusion has been added to the problem, thus smearing out any 
sharp fronts that exist. 

The most commonly used of the above methods are a second-order method derived 
by using second-order central differences and having a cell Reynolds-number 
condition of bh/c < 2, and a first-order method derived by using second-order central 
differences for the second derivative and a first-order upwind difference for the first 
derivative. Both of these methods may be classified as explicit-tridiagonal methods. 
That is, they have the form 

r;Uj+ * + ?$Uj + T,~Uj-] = qf(LU)jy...y 

where uj and (Lu)~ are approximations to U(Xj) and L(u(xj)), respectively, and rJ!, rj, 
rj, and qc are coefficients which depend on the differential operator. Note that the 
maximum accuracy possible with any explicit-tridiagonal method is second order. 

An alternative to the classical approach of separate substitution to obtain 
difference formulas is the class of implicit-tridiagonal methods. These methods are 
derived by seeking a relationship between the unknown solution and the entire 
differential operator on three adjacent points. The result is a method of the form 

rj’u,+ 1 +ri’Ui’rjUj-l=q~(L”)j+,+qic(Lu)j+q,~(Lu)j-l, 

with the additional coefficients qf and qj nonzero and dependent on the coefficients 
of the differential operator. Note that the r,? , r,y , rj, and q,? , q,:, qf define 
tridiagonal-difference operators R and Q then Eq. (4) may be rewritten 

Q(Lu)~ = Ruj W 
or 

(Lu)~ = Q-‘Ruj. (4b) 

If the method described by Eq. (4) is formally fourth-order accurate, then the method 
is known as an operator compact implicit (OCI) method. Note that formal fourth- 
order accuracy is the highest accuracy that can be obtained by a method of the form 
of Eq. (4). 

The original OCI method was developed by Swartz [3] for a uniform mesh using 
Hermite-Birkhoff interpolation. A Taylor-series development of the method for both 
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uniform and nonuniform mesh was given by Ciment et al. [4]. In [4] it was shown 
that for a uniform mesh the method had a formal cell Reynolds-number limitation of 
b/z/s <fl. In [5], Berger et al. showed that a class of OCI methods could be 
obtained by considering the OCI coefftcients derived from the Taylor-series approach 
as asymptotic series in the mesh size h. The result is a method with nine free 
parameters. Using six of these parameters it is possible to obtain a formally fourth- 
order method with no cell Reynolds-number limitation. Moreover, the resulting 
tridiagonal system of equations is diagonally dominant and satisfies a maximum prin- 
ciple corresponding to that satisfied by Eq. (2). 

All of the above methods may be classified as polynomial methods; i.e., the coef- 
ficients r,f, r;, r,:, and qf, qf, q,: of the difference operator are polynomials in the 
mesh size h. These methods have the property that if E is of the order h, then they 
reduce to 0( 1) methods. This can be seen directly by comparing the exact solution 
with the finite-difference solution for the special case of Eq. (2), with u(O) = 1, 
u( 1) = 0, f = 0, and b constant. It can be shown that when E is O(h) the 0( 1) behavior 
will occur unless r,:/r,? becomes exp(-bh/s) as h -+ 0. Miller [6] has shown that 
uniform convergence for any positive order can be obtained only by schemes that 
incorporate an appropriate exponential character into their coefficients. 

Finite-difference methods that incorporate this exponential character are known as 
methods of exponential type. An explicit-tridiagonal method of exponential type was 
given by Allen and Southwell in [7]. The uniform first-order accuracy of this method 
as applied to Eq. (2) is given in (S-IO]. An implicit-tridiagonal scheme of exponential 
type was derived by El-Mistikawy and Werle [ 111. The method of derivation 
involving fundamental solutions of the differential operator is a modification of the 
approach given in [S]. The uniform second-order convergence of this implicit scheme 
has recently been shown [ 121. 

In this paper an OCI method of exponential type is developed. This is derived to be 
formally fourth-order accurate and in the case of E being O(h) reducing to second- 
order accuracy. The orders of accuracy are verified experimentally. The method is 
derived by introducing an integral identity for the differential operator given in 
Eq. (1). It is then shown that both the method of Allen, Southwell and El-Mistakawy, 
Werle can be derived using this identity. After deriving the exponential OCI method 
for Eq. (I), a numerical example comparing the polynomial schemes with the 
exponential schemes on a singular perturbation problem with E = hP is given. Finally, 
the exponential OCI method is extended to time-dependent problems and systems of 
equations and its behavior is demonstarted on a problem with a moving front. 

2. DERIVATION OF THE INTEGRAL IDENTITY 

Consider the diffusion-convection equation 

Lu=-$ (a(x)g) +b(x)f$=f(x) on 10, 11 (5) 



EXPONENTIAL OCI METHOD 141 

u(O) = g, ; 41) = g2, (6) 

wherea>a,>Oandb>b,>Oon [O,l]. 
In order to derive the exponential OCI method, it is necessary to develop an 

integral identity for Eq. (5). Divide the interval [0, 1 ] into a uniform mesh xi = jh, 
j = 0, l,..., J and h = l/J. On the subinterval [xi-r, xi+ 1] define the function P as 

xi-, <X<Xj. 

(7) 

The function P has the following important properties: 

(l) p(xj+*)=p(xj-l)=o, 

(2) P is continuous at xj and P(xj) = 1, 
(3) aP/ax is discontinuous at xi, 

(4) 

(5) P is proportional to the discrete Green’s function for the operator L. 
Multiply Eq. (5) by P and integrate from xj-, to xi+ I ; i.e., 

(9) 

Integrating the left-hand side of Eq. (9) by parts, first from xjP1 to xj and then from 
xi to x,+ 1, Eq. (9) becomes 
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Using properties (l), (2), and (4), Eq. (10) becomes 

where uj = u(xj). 
. 

Integrating the right-hand side of Eq. (11) by parts from xj- , to xj and then xi to 
xjtl the integral identity 
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is derived. 
The integral identity (12) is known as Marchuk identity. Such an identity for b = 0 

is derived in [ 131. 

3. DERIVATION OF ALLEN-SOUTHWELL 
AND EL-MISTAKAWY-WERLE METHODS 

All the finite-difference schemes to be derived using Eq. (12) are tridiagonal- 
difference methods. That is, they take the form 

These methods are explicit if q: = q,: = 0 and implicit, otherwise. The coefficients 
ri+,rje,rJ~,qj+,qf, and q,: of the difference operator depend on the coefftcients c1 and 
b of the differential operator and the mesh size h. 

Assume in Eq. (12) that in the interval [xi-, , xj+ r], b and a are constant and they 
assume the value at xi, Also, define pj by 

pi= bjh/a. 
J’ (14) 

Under these assumptions 

and 

(W 

Finally, approximate all the integrals on the right-hand side of Eq. (12) by the 
midpoint rule. The result is the explicit-tridiagonal method due to Allen and 
Southwell [7] defined by 

r/ = bj/(l -e-Q); rJ: = bjr-Pj/(l -e-O’); r,’ = -(rj’ + r,:); 

qi’ = h and qf =qi =o. 
(16) 

581/46/l-10 
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The method described in Eq. (16) has been shown to be uniformly O(h) for Eqs. (5) 
([6,8-lo]). F o 11 owing [5], this method is to be denoted as the explicit-fundamental 
solution method. 

Assume now that a, b, and f are piecewise constant in [xj-, , Xj+ ,] with the values 
in [xj-*3xj] 

u- = (Uj- * + uj)/29 b- = (bj- I + bj)/2, fj- */* = (fi- 1 + fj)12> 

and the values in [x,, xi+ i] as 

a+ =(“j+uj+1)/2, b+ =(bj+bj+1)/2,fj+1/*=(fj+fj+,)/2. 

Also, define 

p+ = b+h/u+ 

and 

p- = b-h/u-. 

Under these assumptions 

(16) 

rj = -(r,f + rJ:), qj = (h/2b-)((a-/h) - r,:), 

qf = (h/2b+)(ri+ - (u+/h)), qf = q,: + q:. 
(17) 

This method, due to El-Mistakawy and Werle [ 111 has been shown to be uniformly 
O(h*) [12] for all values of b and u. Following (5), this method is to be denoted as 
the implicit-fundamental solution method. 

4. DERIVATION OF THE EXPONENTIAL OCI METHOD 

Both the explicit- and implicit-fundamental solution methods were derived by 
assuming approximations for a, b, andf and then evaluating the integrals in Eq. (12). 
To derive the exponential OCI method, first assume that a and b are piecewise 
quadratic on [xi- 1, xi+ i 1. That is, in [xj-, ,x,1, a and b are the quadratic 
polynomials determined by the values a,-i , u~-~,~, uj and bjPl, bj- 1,2, bj, respec- 
tively, and in [xj,xj+,] a and b are the quadratic polynomials determined by the 
values uj, ai+,,*, ujtl and b,, b,+,,*, bj+l, respectively. 
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To define rI+, r,,-, and r; it is necessary to evaluate the terms 

(18b) 

Using integration by parts, Eq. (18) becomes 

The remaining integrals in Eq. (19) should be evaluated using Simpson’s rule and the 
quadratic approximations for a and b. 

The resulting formulas for r,: , r; , and r-j’ are 

In evaluating the coefficients’ r,? , rj, and r; integrations by parts was performed 
before any quadrature. This was performed so that as the function u approaches zero 
the OCI coefficients approach the same limit as the second-order fundamental 
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solution method. Direct quadrature of Eq. (18) by Simpson’s rule would not have this 
property and the method would not converge as the coeffkient a approaches zero. 

To evaluate qJ:, 47, and qf the following terms from Eq. (12) must be computed: 

The integral in Eq. (21a) is computed using Simpson’s rule and the approximation 

The resulting approximation is 

1 xi+‘i2f d 

xj-1/2 

x=~~fi-l t 22fjtf;.+,). 
To evaluate the integral in Eq. (21b) first integrate by parts the term 

Equation (2 1 b) becomes 

Now assume that f is linear in [xj, xj+r]; i.e., 

f = fi+ l/2 + 4; 1/2tx - xj+ l/2) 

and 

i 
x f k=.fJ+,,,(x- x/+ l/2) + fji 1/2Cx - xj+ 1/2)2/2* 

xj+l/2 

(22) 

(23) 

Pa) 

Pb) 



Substituting Eq. (24b) into 
becomes 

2a a -- 
+3ax bjt ( 1 
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(23) and integrating several times by parts, Eq. (21b) 

The procedure for the evaluation of the integral in (21~) is similar. The resulting 
formula is 

Replacing &+ 1,2, f;.: 1,2, jj- ,,2, and A!- ,,* by the formulas 

f j+1/2=df++fj+1)/2~ J;.:~/z= (.&+I -&J/h, 

f&2 = cfj- 1 + &f;.)PP fj-,,z = CJ-.f-A/h, 

and combining Eqs. (22), (29, and (26) the operator Q is defined by 

qj’=h(&+@i+), 

4; = h(+$ + 4; + 4’7), 

q,: = h(& + c&r), 
where 

(274 
Wb) 
(274 
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and all remaining integrals are evaluated using Simpson’s rule and the quadratic 
approximations for a and b. 

Note that the exponential OCI formulas for b strictly negative are exactly the 
same. Care must be taken, however, in evaluating the exponentials to avoid overflows 
for large values of bh/a. 

5. A SINGULAR PERTURBATION PROBLEM 

The first numerical example to be considered is the singular perturbation problem 

E $ + b(x) g = j-(x, E), x E (0, I), 

u(O) = u,(O), 41) = u,(l), 

‘,tx) = b(x) Lev [-fj:b(t)&] +exp(-x/2), 
(29) 

b(x) = (x + l)3. 

The function u,(x) determines f(x, E). The motivation for this choice of the form of 
the exact solution U, comes from the decomposition of the solution u of Eq. (28) 
suggested by its uniformly valid asymptotic expansion as E + 0 (see Smith [ 1]), 

u(x) = A,(x) + j&-w [-+j~b(W] +&(x,E), (30) 

where c is a constant, A, is smooth, and R,(x, E) satisfies an equation of the same 
general form as Eq. (28). The first term on the right side of Eq. (29) has the form of 
the “most singular part” of a solution of Eq. (28), while the second term is smooth. 
Note that as E becomes much smaller than the mesh size h, the first term becomes 
virtually zero at all grid points except x = 0. Thus for E Q h, U(X) and, in general, its 
numerical approximation, are dominated by the second term on the right side of 
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0.5 t I 1 I I I I I 
0 0.2 0.4 0.6 0.6 1.0 

x 

FIG. 1. Solution of singular perturbation problem. Lu = EU,, + b(x)u, =f(x), on [0, I]; u(O) = 
u,(O), u(l) = u,(l), and b(x) = (x + 1)3; and u,(x) = (l/b(x)) exp[-l/s It b(x) dx] + eP”, E = &. 

Eq. (29). A plot of the exact solution for E = & is given in Fig. 1. This example was 
also examined in detail by Berger et al. [5]. 

The methods to be compared are the standard centered second-order method, the 
standard OCI method [3,4], a first-order upwind method, a second-order upwind 
method, the explicit- and implicit-fundamental solution methods, generalized OCI [5], 
and exponential OCI. The Q and R operators for the standard centered second-order 
method and the first- and second-order upwind methods are given in Table I. To 
conveniently generate a wide variation of h and E for each method considered, 
Eq. (28) was solved with E G hP for various values of p. For each method and each 
value of p, the mesh length h was successively halved starting with h =& to 
h = &, The numerical results are summarized in Table II. 

TABLE I 

Q and R for Standard Polynomial Difference Methods 

Method r,: ri’ r,? 9,: 45 9; 

Centered second order $ - 2 
-2E 

h2 
“+? 
h2 

0 1 0 

Upwind first order E -2E b. 

F 
---L h= -C++ 0 1 h 0 

Upwind second order 
E -2E 0*5(bj + bj+ 1) OJ(bj+bj+l) 2 -- h* h I+ h= h 0 0.5 0.5 



TA
BL

E 
II 

Ra
te 

of 
Co

nv
er

ge
nc

e 
an

d 
Ma

xim
um

 
Er

ror
 

for
 

Si
ng

ula
r 

Pe
rtu

rb
ati

on
 

Pr
ob

lem
 

Me
th

od
 

&=
l 

E 
= 

,,o
- 

E 
= 

ho
.7

5 
e=

h 
E 

= 
h’.

5 
E=

h2
 

E=
h3

 
- 

Ce
nte

re
d 

se
co

nd
 

or
de

r 

OC
I 

sta
nd

ar
d 

(S
wa

rtz
) 

Up
wi

nd
 

firs
t 

or
de

r 

Up
wi

nd
 

se
co

nd
 

or
de

r 
(A

KK
) 

Fu
nd

am
en

ta
l 

so
lut

ion
 

ex
pli

cit
 

(Q
 

= 
1t 

firs
t 

or
de

r 
(A

lle
n-

So
ut

hw
ell

) 

Fu
nd

am
en

ta
l 

so
lut

ion
 

im
pli

cit
 

(O
Cl

)- 
se

co
nd

 
or

de
r 

(E
l-M

es
tik

aw
y-W

er
le)

 

Ge
ne

ra
liz

ed
 

OC
I 

Pl
=3

 

Ex
po

ne
nt

ial
 

OC
I 

2.0
2 

4.0
0 

1.0
0 

1.0
0 

1.1
0 

2.0
6 

0.5
2 

0.4
9 

0.5
3 

1.8
E-

5 

1.0
1 

7.8
E-

10
 

0.2
4 

4.2
E-

3 

0.2
3 

4.O
E-

3 

0.0
1 

0.0
1 

0.0
0 

0.0
0 

3.8
E-

8 

0 2.0
E-

4 

2.8
E-

4 

6.7
E-

4 
3.5

E-
2 

1.5
E-

6 
1.5

E-
O 

2.6
E-

2 
1.3

E-
1 

2.6
E-

2 
1.3

E-
1 

0.4
9 

1.0
0 

1.0
1 

2.2
E-

2 
5.4

E-
4 

4.8
E-

5 

0.4
8 

1.0
0 

2.0
0 

2.2
E-

2 
4.

9E
A 

4.8
E-

5 

1.9
7 

1.4
8 

1.2
4 

6.
lE

-7
 

1.0
0 

0.9
9 

1.0
0 

1.0
0 

4.7
E-

5 
4.8

E-
5 

4.8
E-

5 
3.9

E-
8 

4.2
E-

6 
3.

lE
-5

 

2.0
1 

1.9
8 

1.9
9 

2.7
E-

7 
2.0

0 
2.0

4 
2.0

0 
2.0

0 
2.4

E-
8 

2.3
E-

8 
2.3

E-
8 

2.2
E-

7 
3.5

E-
7 

2.9
E-

7 

4.0
0 

4.0
1 

2.2
1 

2.9
3 

1.0
2 

l.lE
-9

 

2.4
5 

2.9
E-

12
 

0.0
1 

2.0
2 

1.9
4 

2.0
1 

2.0
0 

5.3
E-

6 
2.O

E-
9 

2.O
E-

9 

2.1
6 

2.0
2 

2.0
0 

2.
64

48
 

1.8
8-

8 
1.8

8-
8 

1.4
E-

6 
1.4

E-
3 

9.0
1-

l 
1 

3.8
5-

09
 

’ 
De

no
tes

 
ro

un
d-

off
 

err
or.

 



EXPONENTIAL OCI METHOD 151 

For each method and each p the computed rate of convergence and the maximum 
error for h = & are given. Note the following points in Table II: 

(1) The computation for the centered second-order method and the standard 
OCI method could not continue for p > 1 because of cell Reynolds-number con- 
ditions. 

(2) All the polynomial methods reduced to the predicted O(1) accuracy for 
&= h. 

(3) The uniform first-order accuracy of explicit-fundamental solution method 
and the uniform second-order accuracy of implicit-fundamental solution method was 
demonstrated. 

(4) For E = 1 the fourth-order accuracy of the exponential OCI method is 
demonstrated. As p increases a uniform second-order accuracy appears to hold. 
Further proof of the fourth-order accuracy of the exponential OCI method is given in 
later examples. 

A graphical summary of Table II is presented in Fig. 2. 
The convergence results for all the methods considered for Eq. (28) do not hold if 

the convection term of the differential operator is in conservation form. That is, if 

Lt.4 = E g + g (bu), 

or more generally, if 

Lu2 .a” + a 
( ) ax ax 5 (bu). (32) 

6 =hP P=ln (E/h) 

FIG. 2. Rate of convergence for singular perturbation problem. +, CD; +, OCI Swartz; 0, UPl; X, 
UP2; A, IFSl; W, IFSZ; 4, generalized OCI; an+ 0, exponential OCI. 



152 STEPHEN H. LEVENTHAL 

The results for the polynomial methods that are applicable to equations in conser- 
vation form, i.e., the second-order centered method, and the first-order upstream 
method, are the same. The standard OCI method, the generalized OCI, and the 
second-order upwind method are not applicable to Eq. (31) without using the 
derivative of the coefficient b. Thus, these methods would not conserve mass and are 
not discussed here. The exponential methods may be extended to operators of the 
form of Eq. (32) by introducing a new integral identity (see Appendix A for the 
derivation of the integral identity and the extension of the implicit-fundamental 
solution method and the exponential OCI method). To demonstrate the accuracy of 
the methods for Eq. (32) consider the problem 

=& (exp [-$jfW&]-&-) +ev(-l/W 
b(x) = (x + l)‘, (34) 

TABLE III 

Results for Second-Order Fundamental Solution Method: Conservation Form 

&=l E = ho.’ E = ho.75 E=h E = h’.5 e=h2 E=h’ 
h MER” MER MER MER MER MER MER 

l/32 1.23-3 1.32-2 3.49-2 6.62-2 1.03-l 1.07-I 1.08-I 
1.88 1.32 1.00 0.84 0.94 0.95 0.96 

l/64 3.46-4 5.30-3 1.75-2 3.69-2 5.36-2 5.51-2 5.53-2 
1.98 1.35 1.06 0.92 0.91 0.98 0.98 

l/l28 8.53-5 2.08-3 8.36-3 1.95-2 2.74-2 2.8&2 2.8&2 
2.00 1.37 1.12 0.95 0.98 0.99 0.99 

l/256 2.14-5 8.054 3.85-3 1.01-2 1.39-2 1.41-2 1.41-2 
2.00 1.38 1.16 0.97 0.90 0.99 1.00 

l/512 5.34-6 3.09-4 1.72-3 5.18-3 7.01-3 7.08-3 7.08-3 
2.00 1.40 1.19 0.98 0.99 1.00 1.00 

l/l024 1.34-6 1.17-4 7.58-4 2.62-3 3.52-3 3.55-3 3.55-3 
2.00 1.42 1.20 0.99 1.00 1.00 1.00 

I/2056 3.34-7 4.35-5 3.29-4 1.32-3 1.76-3 1.78-3 1.78-3 

’ Maximum error rate. 
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TABLE IV 

Results for Exponential Operator Compact Implicit Method: Conservation Form 

&=l 6 = ho” E = ho.75 c=h E=h’.* e=h2 c=h3 
h MER” MER MER MER MER MER MER 

l/32 8.99-5 
5.45 

l/64 2.05-6 
3.55 

l/128 1.75-7 
4.02 

l/250 1.08-8 
4.01 

l/512 6.71-10 
4.03 

l/1024 4.11-11 

l/2056 RE* 

1.01-4 1.31-3 7.28-3 5.36-3 1.60-3 8.73-4 
2.23 1.47 0.89 1.50 1.92 2.03 

2.15-5 4.74-4 3.93-3 1.90-3 4.21-4 2.13-4 
2.38 1.55 0.93 1.51 1.96 1.97 

4.13-6 1.62-4 2.06-3 6.66-4 1.08-4 5.44-5 
2.40 1.60 0.96 1.52 1.98 1.99 

7.84-7 5.34-5 1.06-3 2.33-4 2.74-5 1.37-5 
2.41 1.64 0.97 1.52 1.99 1.99 

1.47-7 1.71-5 5.42-3 8.15-5 6.89-6 3.45-6 
2.43 1.67 0.98 1.51 2.00 2.00 

2.74-8 5.37-6 2.74-4 2.85-5 1.73-6 8.65-7 
2.44 1.69 0.99 1.51 2.00 2.00 

5.05-9 1.66-6 1.38-4 1.00-5 4.33-7 2.17-7 

’ Maximum error rate. 
* Round-off error. 

As before, Eq. (33) was solved with E = hP for various values of p. The mesh 
length was successively halved starting with h = -& to h = &. Tables III and IV 
give the results for the generalization of the implicit-fundamental solution method and 
the exponential OCI method, respectively. These results show that the uniform 
second-order accuracy no longer holds for the implicit-fundamental solution method; 
that is, the error reduces to first order for p = 1 and remains there. This drop to tirst- 
order accuracy also occurs for the exponential OCI method. For p > 1, however, 
there is a recovery of accuracy until second-order accuracy is achieved. 

6. EXTENSION TO TIME-DEPENDENT PROBLEMS 

The extension of the exponential OCI method to time-dependent problems is 
straightforward. Consider the problem 

(354 
(35b) 
(35c) 
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Discretize Eq. (35a) in time by some method (e.g., Crank-Nicholson) to obtain 

@ n+’ - u”)/At= [((Lu)“+’ + (LA)“)/21 +fn+*‘*. (36) 

Using the exponential OCI method, the spatial-differential operator L may be 
represented at any time t” by 

(Lu); = (Q”)-‘R”ui”, (37) 

where Q” and R” are defined by Eqs. (4), (20), and (27) are now time dependent 
because of the time dependence of a and b. 

Substituting Eq. (37) into (36), and rearranging, the equation to be solved is 

[I- (At/2)(Q”+‘)-‘R”+‘] uJ+’ 

= [I + (At/2)(Q”)-‘R”] uJ +Atf;+1’2 = Gjn+’ (38) 
or 

IQ n+l - (&/2)R”+‘]~i”+‘= Qn+l,;+l. (39) 

Thus, to compute each time step rquires the solution of a tridiagonal system of 
equations. Note that Gy” is easily computed from the previous time level; i.e., 

,;+I = [I+ (At/2)(Q”)-‘R”] u; + Atfin+“* = 224; 

- [I- (At/2)(Q”)-‘R”] uJ + Atf;+“* 

= 2~; - G; +Atf;+1’2. 

To demonstrate the effectiveness of the method on time-dependent problems, 
consider the example 

on [O, 11, 

4% 0) = u,(O), 
u(O, t) = u&4 f), u(L 0 = &(l, 0, 
b(x, t> = -uJx, t), 

%?(X~O’ 
O.lfYA + 0.5emB + e-’ 

e-A+e-B+e-c 2 

A= 7 (x - 0.5 + 4.95t), 

B = F (x - 0.5 + 0*75t), 

c = y (x - 0.375). 
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FIG. 3. Solution of wave front problem, I = 0.4, u = 0.01. 

This identical solution for the nonlinear Burger’s equation 

was studied in [ 141. The exact solution Z&X, t) represents a moving wave front. The 
steepness of the drop at the front depends on a; i.e., the smaller u is the steeper the 
drop is. A plot of u, for u = 0.01, t = 0.4 and 1.0 may be seen in Figs. 3 and 4, 
respectively. 

Convergence results for d = 0.1 and u = 0.01 are given in Tables V and VI, respec- 
tively. Table V shows that for a relatively mild drop, u = 0.1, the fourth-order 
accuracy of the method is obtained. For a steep drop, however, u = 0.01, Table VI 
verifies the results of the singular perturbation problem that more mesh points are 
needed to maintain the accuracy. 

FIG. 4. Solution of wave front problem, T = 1.0, u = 0.01. 
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TABLE V 

Convergence Results for Moving Wave Front Problem (u = 0.1) 

AX 

0.1 
0.05 
0.025 
0.0125 

0.1 
0.05 
0.025 
0.0125 

At 

0.05 
0.0125 
0.003 125 
0.00078125 

0.05 
0.0125 
0.004125 
0.00078125 

No. of 
time steps 

8 
32 

128 
512 

20 
80 

320 
1280 

L,-error 
- 

3.7&05 
2.325-06 
1.454-07 
9.089-09 

4.332-05 
2.716-06 
1.69947 
1.062-08 

L,-rate 

3.99 
4.00 
4.00 

4.00 
4.00 
4.00 

TABLE VI 

Convergence Results for Moving Wave Front Problem (a = 0.01) 

AX At 
No. of 

time steps L,-error L,-rate 

0.1 0.05 8 1.346-02 
0.05 0.0125 32 1.942-03 

2.79 

0.025 0.003 125 128 1.629-04 
3.58 

0.0125 0.00078 125 512 1.076761245 
3.92 

0.1 0.05 20 1.82642 
0.05 0.0125 80 5.380-03 1.76 
0.025 0.003 125 320 4.4 18-04 3.61 
0.0125 0.00078125 1280 2.87@05 3.94 

7. EXTENSION TO SYSTEMS OF EQUATIONS 

In [ 151, an OCI method for a diffusion operator in conservation form was derived. 
This method was extended to systems of equations by considering all the terms in the 
original derivation as matrices of vectors. Since there had been no necessary 
commutations of terms in the original derivation, the extension was straightforward. 
This type of extension is not possible for the exponential OCI method. The primary 
reason is that the exponential of a matrix does not have the same differentiation 
properties as the exponential of a scalar. Thus, a matrix version of the function P in 
Eq. (7) and the identity (12) is not possible. Therefore, the following extension of the 
method was conceived. Consider the system of equations 



EXPONENTIAL OCI METHOD 157 

a 
ax a” ax ( ) 

au, +b au,+2 
” ax ax a12 ax ( 1 fff2 +b,,Z+f, 

au 
==h,,$+h,,-g; 

a 
ax a21 ax ( ) 

aU’+b au,+2 21 ax ax a22ax ( 1 
au, +b %f2 

22 ax 

= h,, 2 + h,, 2, 

W) 

W’b) 

for x E (0, 1) with initial conditions 

Ulk 0) = U’O(4, u,(x, 0) = u2l)(x), 

and boundary conditions 

~‘(0~ 0 = glow9 Ul(l, 4 = gllw9 

u2K4 4 = g20w, u2(4 4 = g21w . 

Denoting the four spatial-differential operators in Eq. (40) by L,, , L12, L,, , and L,, 
the equation may be written as 

Ll,u,+L,2u2+J~=h,l~+h~2~ Wa) 

(4lb) 

Using a backwards in time-difference approximation and replacing the spatial- 
differential operators by their respective exponential OCI approximations, Eq. (4 1) is 
replaced by 

(Q~~~)-~R~~'u~~~~+~Q~~~)-~R~~~u~~~+f;~~~ 
= h;; ‘(u:,;’ - u:,~)/A~ + h:: ‘(u;;’ - u;,~)/A~ 

(Q~~~~-~R~~~u~,~~+(Q;~'~-~R;~'u;,~~+f~,~~ 
= h;;‘(u:,;’ - u:,~)/A~ + h;;‘(u;;’ - u;,~)/A~. 

Rearranging Eq. (42) to obtain 

Wa) 

(42b) 

[Z(h’l;‘/At) - (Q::‘)-‘R::‘] u:,;’ 

= (h::‘/At)~:,~ - h;:’ (u;,;‘-~;,~)/dt+ (Q;:‘)-‘R;:‘u;,;’ +f:,;’ 

[Z(h;;‘/At) - (Q;;‘)-‘R;:‘] u;,;’ 

(434 

= h;:‘u~,,/At-h::‘(u:,f -u:,j/At) + (Q;:‘)-‘R::‘u:,~’ + f;,~'. (43b) 
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The algorithm for solving Eq. (43) for a;” and u;+’ follows: 

(1) For every time step after the first, initialize u;” as 

u;,; l.0 = 2u;,j - u;,;’ 

(on the first u:,:‘,’ = u;,~) and set the iteration counter i = 1). 
(2) Solve the equation 

and form the vector 

Gl,j = (h ;:‘u:,~/&) - h;;‘[(u;,;‘+’ - u;,~)/&] + V,,j +f:,; ‘. 

(3) Compute u;+‘*~ by solving the equation 

[Q;;‘(h;f’/dt) -I?;:‘] u;,;‘,~ = Q:l’Gl,j. 

(4) Solve the equation 

and form the vector 

G,,j = (h;: ‘u;,~/&) - h;: ’ [(U:,:“i - U:,j)/At] + vl,j t f;,$ ‘* 

(5) Compute u;,; ‘A by solving the equation 

[Q;;‘(h;$‘/dt)-R;;‘] u;,;‘,~= Q;;‘G,,j. 

(6) Check convergence by computing maximum change in u;,‘J IVi and u~,J ‘A 
from the previous iteration. If change is less than a given tolerance, go to the next 
time step. If not, i = it 1; go to step (2). The above algorithm is a block 
Gauss-Seidel method for Eq. (42). 

Numerical experiments have shown that diagonal dominance is necessary for 
fourth-order convergence. This same condition is required by Kreiss and Nichols [ 161 
for singularly perturbed-boundary value problems. In addition, invertibility of all the 
discrete operators Q”,’ ’ is required. If they are not invertible, however, alternate OCI 
operators for which they are invertible may be used. 

The following example was chosen to verify the method 

where 

u,(x, t) = (O.lePA t 0.5emB t e-“)/(ePA + ePB t e-‘), 

A = (O.O5/a)(x - 0.5 t 4.95t), 

B = (0.25/u)(x - 0.5 t 0.75t), 
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c = (0.5/0)(x - 0.375); 

q(x, t) =X2? +x + t + 1, 

a ,* =a; a ,2=(J 2. 9 a - 21- 1. 3 az2 = 1, 

b,, = ut ; b,, = 1; b,, = 1; b,, = 1, 

h,, = 1; h,, = 0; h,, = 0; h,, = 1. 

andf, and f2 are chosen so that Eq. (40) is satisfied. 
Convergence results for u = 0.1, u = 0.05, and u = 0.01 are given in Tables VII, 

VIII, and IX, respectively. These results confirm the expected order of convergence of 
the method and the increased difficulty of the problem as u is reduced. Note that the 
last column in these tables indicates the number of iterations needed per time step. 
This number is dependent on the convergence tolerance r. The tolerance used for a 
given Ax is given in Table X. The large number of iterations needed for u = 0.01, 
Ax = 0.05, At = 0.05 as compared to the number needed for u = 0.01, Ax = 0.05, 
At = 0.00078125 shows that r should also be linked to the time-step size. 

TABLE VII 

Convergence Results for System of Equations (a = 0.1) 

No. of time No. of iterations 
Ax AI steps L,-error L,-rate 
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TABLE IX 

Convergence Results for System of Equations (u = 0.01) 

Ax A I 
No. of time 

steps L,-error L,-rate 
No. of iterations 

per time step 

0.1 
0.05 

0.1 
0.05 

0.0125 
0.00078 125 

0.0125 
0.00078125 

0.1 0.0125 
0.05 0.00078125 

0.05 0.05 
0.025 0.003 125 

0.05 0.05 
0.25 0.003 125 

16 
256 

48 
768 

80 
1280 

12 
192 

20 
320 

3.25-02 
2.89-03 3.49 

4 

1.79-01 4.57 4 
7.54-03 

2.25-01 4 
2.17-02 3.37 

1.38-01 30 
6.24-03 4.47 4 

1.61-61 3.78 30 
1.17-02 4 

TABLE X 

Convergence Tolerance Used for Each Ax in Systems of Equations Example 

Ax Convergence tolerance Ax Convergence tolerance 

0.2 1.0&03 0.05 2.5&06 
0.1 5.00-05 0.025 1.25-07 

8. CONCLUSIONS 

(1) An integral identity was developed for diffusion-convection differential 
operators. This identity can be used to develop a class of exponential finite-difference 
methods. 

(2) One method in the class is a fourth-order accurate OCI method. The OCI 
method is applicable to two-point boundary value problems, one-dimensional scalar- 
parabolic equations, and one-dimensional systems of equations. 

(3) Numerical examples demonstrated the fourth-order accuracy of the method 
for smooth problems and a uniform second-order accuracy for singular perturbation 
problems. 

(4) Extension of the exponential OCI method to nonlinear problems is possible 
by performing Newton iterations on the nonlinear differential equation and then 
solving the sequence of linear problems by the OCI .method. 

(5) Extension of the exponential OCI method to two dimension is possible 
[171. 
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(6) Application of the exponential OCI method to reservoir simulation 
problems is presently underway. Its effective use is dependent on a successful 
combination of the nonlinear algorithm and the system algorithm. Preliminary results 
are encouraging, however, further work is needed. 

APPENDIX A 

Consider the equation 

Lu=$ a; ++J ( 1 on (0, 1) (AlI 
u(O) = uo 9 u(l)=u,. 

In this Appendix a generalization of the implicit-fundamental solution method and 
the exponential OCI method is derived for Eq. (Al). 

Divide the interval [0, l] into a uniform mesh xi =jh, j = 0, l,..., J and h = l/J. 
On the subinterval [xj- 1, xi+ i] define the function P as 

J 

f-2 h 
exp -L 

xi-1 LJ xj a 

=jz-,exp [jl+ ” ’ 
‘,--I w. 

The function P has the following important properties: 

(l) p(xj+~)=p(xj-~)=o~ 

(2) P is continuous at xj and P(xj) = 1, 

(3) i?P/ax is discontinuous at xi and 

Xj-l&X,<Xj, 643) 
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(4) P is proportional to the discrete Green’s function for the operator J!,. 

Multiply Eq. (Al) by P and integrate from xj-i to x~+~; i.e., 

(A41 

Integrating the left and right side of Eq. (A4) by parts first from xi- I to xi and then 
from xi to x~+~, Eq. (A4) becomes 

or 

Equation (A5) is the integral identity needed to derive the methods. 
To define the implicit-fundamental solution method assume that a, b, ‘and f are 

piecewise constant in [xjel, xj+r] with their values a-, b-, f - and a+, b+, f’ 
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defined in the subintervals [xj- i, xj] and [x1, xj+ ,I, respectively, in the same manner 
as Section 3. Also, define 

p+ = b+h/a+ 

and 

p- = b-h/a-. 

Under these assumptions 

rj’ = b+/(l - exp(-p+)), r; = fl~~(?+~)) , 

t-j = -(exp(-p+)rT + exp@-) rj), qi’ = h(0.25 + $j’), 

qf = h(0.5 + $j’ + 4J, qj = h(0.25 + q,:), 

where 

47 = (rj+/b +)(0.25 - (0.5/p’ ) + exp(-pt )(0.25 + (0.5/p + ))) 

and 
4,: = -(exp@-)r,:/b-)(0.25 - (0.5/p-) + exp(-p-)(0.25 + (0.5/p-))). 

To define the exponential OCI method assume that a and b are piecewise quadratic 
in [xi- 1, xj+ ,] with their values in [x,-, , xi] determined by aj-, , aj- ,,*, aj, bj- I, 
b j-,,2, and bj and their values in [xi, xi+ 1] determined by aj, a. J+1/27 '.i+l3 J’ JtL/z? 

b. b. 
and bj+l. Proceeding as in Section 4, 

rj'= (k- (exP [-j;+';dt]/b,) 

+ j;+' (exp [-j;+';dqg) dxy, 

exp [-j~~-,-$ft] 

r,I- = 9 

i- (exp [-Jz-,i&]lb,-,) +I:-, (exp [-jIf&] $2) dx 

r;=-(exp- [j~“~d~]r~ +exp [jI,t,fdt]r;), 647) 

q/’ = h(& + @;I, 
qf = h(+ + 4; + qJ:), 

qJr = h(& + gJ:), 

648) 
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where 

and 
-- -+ qj =-qj-1* (AlO) 

As before, the remaining integrals in Eqs. (A7)-(AlO) should be evaluated using 
Simpson’s rule and the quadratic approximations of a and b. The only exceptions, 
however, are the integrals of the form 

- j;+’ (exp [-l:i”$d5] gf) dx. 

This type of integral should be evaluated using the open Newton-Cotes formula [ 181 

i 
xjtl 

gd= f t&j+ l/4 - Sj+ l/2 + 2gj+3/4)* 
xj 
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